

Prevention of Infection Guidelines

J. Barth, A. Boutsiadis, N. Tardy, J. Rossi, JC. Panisset and JL. Prudhon

6th Advanced Course on Knee surgery

January 31st – February 5th, 2016 Val d'Isère - France

<section-header>Infection prevention

2nd Edition

Now updated and with a new chapter on measuring cleanliness!

A Reference for the Rest of Us!

FREE eTips at dummies.com*

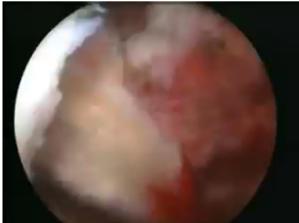
J. Darrel Hicks, REH

1. Literature

2. Our Protocol

Orthopaedic Infections

Arthroplasties (0.5-1.8%)



ACLs (0.14-1.7%)

Who is the culprit?

(2000000 20000)	
Type of orthopaedic surgery	Risk of surgical site infection
Primary hip and	0.8% Norwegian Register
knee arthroplasties	(73,000 arthroplasties)
	0.9% Finnish Register
Risk of Infection	(4628 arthroplasties)
<1%	0.9% Geneva Register
	(6101 arthroplasties)
Elbow arthroplasties	3.6% (2458 arthroplasties)
Femoral osteosynthesis	3.9% (541 operations)
Pin track care	7.0% (170 procedures)
Foot and ankle surgery	1.6% (555 operations)
Hallux valgus (Lapidus procedure)	1.3% (61 operations)
Arthroscopies	0.1–0.4% (552,
	258 procedures)
Open fractures Gustilo grade I	0.9%
Open fractures Gustilo grade II	1.9%
Open fractures Gustilo grade III	12—53%
Amputation stump	5—22%

Surgical site infection in orthopaedic and bone trauma surgery (selected series)^a

Uçkay et al. Journal of Hospital Infection 2013

R-TKR secondary to deep SSI in the U.S. has been projected to be 70,000 annually by 2020, at a cost of \$1.62 billion annually

Infection prevention and control strategies are important for patient safety and reducing the economic and clinical burden of infection TKR

Kurtz et al. J Arthroplasty. 2012

Review

Risk factors for periprosthetic joint infection after total joint arthroplasty: a systematic review and meta-analysis

Y. Zhu^{a,b,1}, F. Zhang^{a,b,1}, W. Chen^{a,b}, S. Liu^{a,b}, Q. Zhang^{a,b}, Y. Zhang^{a,b,*}

^a Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China ^b Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, PR China

ARTICLE INFO

Article history: Received 29 April 2014 Accepted 21 October 2014 Available online 4 December 2014

Keywords: Risk factors Periprosthetic joint infection Total joint arthroplasty Meta-analysis

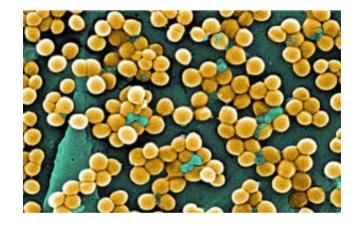
SUMMARY

Many of the mooted risk factors associated with periprosthetic joint infection (PJI) after total joint arthroplasty (TJA) remain controversial and are not well characterized. Online and manual searches were performed using Medline, Embase, Chinese National Knowledge Infrastructure and the Cochrane Central Database from January 1980 to March 2014). For inclusion, studies had to meet the quality assessment criteria of the CONSORT statement, and be concerned with evaluation of risk factors for PJI after TJA. Two reviewers extracted the relevant data independently and any disagreements were resolved by consensus. Fourteen studies were included in this meta-analysis. The following significant risk factors for PJI were identified: body mass index (both continuous and dichotomous variables); diabetes mellitus; corticosteroid therapy; hypoalbuminaemia; history of rheumatoid arthritis; blood transfusion; presence of a wound drain; wound dehiscence; superficial surgical site infection; coagulopathy; malignancy, immunodepression; National Nosocomial Infections Surveillance Score ≥ 2 ; other nosocomial infection: prolonged operative time; and previous surgery. Factors that were not significantly associated with PJI were: cirrhosis; hypothyroidism; urinary tract infection; illicit drug abuse; alcohol abuse; hypercholesterolaemia; hypertension, ischaemic heart disease; peptic ulcer disease; hemiplegia or paraplegia; dementia; and operation performed by a staff surgeon (vs a trainee). Strategies to prevent PJI after TJA should focus, in particular, on those patients at greatest risk of infection according to their individual risk factors.

© 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

Potential risk	No of studies	Pooled OR or SMD	LL 95% CI	UL 95% CI	P-value	Q-test (P)	Ι ² (%) ^c
BMI (continuous)	3	1.08	1.02	1.15	0.009 ^b	0.087	59.1
BMI (>40 kg/m²)	2	3.74	2.01	6.96	<0.001 ^a	0.376	0
Diabetes mellitus	8	1.26	1.15	1.38	<0.001 ^a	0.376	7.0
Cirrhosis	3	1.07	0.87	1.32	0.524 ^a	0.792	0
Steroid therapy	5	2.19	1.52	3.15	<0.001ª	0.413	0
Hypothyroidism	2	0.98	0.89	1.08	0.732 ^a	0.925	0
Urinary tract infection	3	1.08	0.99	1.19	0.886 ^a	0.339	7.6
Renal disease	4	1.02	0.93	1.08	0.378 ^b	0.028	67.1
Albumin level < 34 g/l	2	2.94	1.57	5.53	<0.001ª	0.462	0
Hypercholesterolaemia	2	0.93	0.85	1.01	0.097	0.659	0
Rheumatoid arthritis	7	1.41	1.26	1.57	<0.001 ^b	0.019	60.4
Blood transfusion	5	1.60	1.22	2			
Wound drainage	6	2.00	1.15		Lia	h Dick	
Wound dehiscence	3	8.08	3.96		піві	h Risk	
Surgical site infection	3	9.13	4.14		^		
Drug abuse	2	1.07	0.56		U	R>2	
Alcohol abuse	2	1.39	0.93	A.			
Coagulopathy	3	1.31	1.13	1.52	<0.001	U.140	48.1
Hypertension	2	1.05	0.97	1.14	0.241 ^a	0.173	46.1
IHD	2	1.07	0.98	1.17	0.115 ^ª	0.230	30.1
Peptic ulcer disease	2	1.19	0.89	1.59	0.252	0.714	0
Hemiplegia or paraplegia	2	1.10	0.69	1.74	0.693	0.200	39.2
Malignancy	5	1.17	1.02	1.22	0.017 ^a	0.103	48.1
Immunodepression	2	1.32	1.15	1.50	<0.001 ^a	0.593	0
Dementia	2	1.03	0.75	1.41	0.878 ^a	0.976	0
Nosocomial infection	2	2.48	1.07	5.73	0.034 ^a	0.643	0
NNIS score≥2	2	4.93	2.88	8.43	<0.001ª	0.716	0
Superficial infection	2	4.52	1.53	13.35	0.006 ^a	0.708	0
Operation performed by trainee (vs staff surgeon)	2	1.24	0.50	3.10	0.641	0.138	54.5
Operative time	2	2.18	1.39	3.42	0.001 ^a	0.710	0
Previous surgery	2	3.15	1.49	6.63	0.003 ^a	0.324	0

Detailed data on 31 potential risk factors for periprosthetic joint infection and the outcomes of meta-analysis


Zhu et al. Journal of Hospital Infection 2015

Potential risk	No of studies	Pooled OR or SMD	LL 95% CI	UL 95% CI	P-value	Q-test (P)	l ² (%) ^c
BMI (continuous)	3	1.08	1.02	1.15	0.009 ^b	0.087	59.1
BMI (>40 kg/m ²)	2	3.74	2.01	6.96	<0.001 ^a	0.376	0
Diabetes mellitus	8	1.26	1.15	1.38	<0.001 ^a	0.376	7.0
Cirrhosis	3	1.07	0.87	1.32	0.524 ^a	0.792	0
Steroid therapy	5	2.19	1.52	3.15	<0.001 ^a	0.413	0
Hypothyroidism	2	0.98	0.89	1.08	0.732 ^a	0.925	0
Urinary tract infection	3	1.08	0.99	1.19	0.886 ^a	0.339	7.6
Renal disease	4	1.02	0.93	1.08	0.378 ^b	0.028	67.1
Albumin level < 34 g/l	2	2.94	1.57	5.53	<0.001ª	0.462	0
Hypercholesterolaemia	2	0.93	0.85	1.01	0.097	0.659	0
Rheumatoid arthritis	7	1.41	1.26	1.57	<0.001 ^b	0.019	60.4
Blood transfusion	5	1.60	1.22	2			
Wound drainage	6	2.00	1.15	Γ	Anda	rate Ri	
Wound dehiscence	3	8.08	3.96		nouei	aleni	SK
Surgical site infection	3	9.13	4.14		1 . (
Drug abuse	2	1.07	0.56		T<(DR<2	
Alcohol abuse	2	1.39	0.93	4.00			
Coagulopathy	3	1.31	1.13	1.52	<0.001	V.140	48.1
Hypertension	2	1.05	0.97	1.14	0.241 ^a	0.173	46.1
IHD	2	1.07	0.98	1.17	0.115 ^ª	0.230	30.1
Peptic ulcer disease	2	1.19	0.89	1.59	0.252	0.714	0
Hemiplegia or paraplegia	2	1.10	0.69	1.74	0.693	0.200	39.2
Malignancy	5	1.17	1.02	1.22	0.017 ^a	0.103	48.1
Immunodepression	2	1.32	1.15	1.50	<0.001 ^a	0.593	0
Dementia	2	1.03	0.75	1.41	0.878 ^a	0.976	0
Nosocomial infection	2	2.48	1.07	5.73	0.034 ^a	0.643	0
NNIS score≥2	2	4.93	2.88	8.43	<0.001 ^a	0.716	0
Superficial infection	2	4.52	1.53	13.35	0.006 ^a	0.708	0
Operation performed by trainee	2	1.24	0.50	3.10	0.641	0.138	54.5
(vs staff surgeon)							
Operative time	2	2.18	1.39	3.42	0.001 ^a	0.710	0
Previous surgery	2	3.15	1.49	6.63	0.003 ^a	0.324	0

Detailed data on 31 potential risk factors for periprosthetic joint infection and the outcomes of meta-analysis

Zhu et al. Journal of Hospital Infection 2015

Main reponsible organism: Staphylococcus

Sources of S. aureus in SSI

Endogenous to the patient (nasal colonization) Exogenous (hospital environement) Hematogenous

Weiser et al. JBJS 2015

How to reduce SSI?

Main measures to prevent orthopaedic surgical site infection^a

Measure	Relative surgical site infection reduction	Evidence grading	
High impact			
Active post-discharge surveillance	33%, France	IA	
Multimodal intervention	87%, The Netherlands	IA	
	65%, Houston, TX, USA		
	10%, Madrid, Spain		
Adequate antibiotic prophylaxis	73%, among orthopaedic patients in the USA	IA	
	81%, review of the literature		
Promising impact, needs further studies			
Nasal mupirocin, S. aureus decolonization	43%, Pittsburgh, PA, USA	IB	

^a Adapted from Uçkay *et al.*⁴ and Mangram *et al.*⁷

Uçkay et al. Journal of Hospital Infection 2013

COPYRIGHT © 2015 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORA

CURRENT CONCEPTS REVIEW

The Current State of Screening and Decolonization for the Prevention of *Staphylococcus aureus* Surgical Site Infection After Total Hip and Knee Arthroplasty

Mitchell C. Weiser, MD, MEng, and Calin S. Moucha, MD

Investigation performed at the Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY

- The most common pathogens in surgical site infections after total hip and knee arthroplasty are methicillinsensitive Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), and coagulase-negative staphylococci.
- Patients colonized with MSSA or MRSA have an increased risk for a staphylococcal infection at the site of a total hip or knee arthroplasty.
- Most colonized individuals who develop a staphylococcal infection at the site of a total hip or total knee arthroplasty have molecularly identical S. aureus isolates in their nares and wounds.
- Screening and nasal decolonization of S. aureus can potentially reduce the rates of staphylococcal surgical site infection after total hip and total knee arthroplasty.

Effectiveness of Bundeled Intervention 20 US hospitals - 42 534 operations

mupirocin intranasally twice daily + bathe daily with chlorhexidine-gluconate (CHG) for up to 5 days before operation

bathe with CHG the night before and morning of their operations

Preop. Naresscreen D-0 MRSA or MSSA

vancomycin and cefazolin or cefuroxime for perioperative prophylaxis

cefazolin or cefuroxime alone

Schweizer et al. JAMA 2015

Effectiveness of Bundeled Intervention 20 US hospitals - 42 534 operations median 39 months

	Preintervention Period		Intervention Period		Rate Ratio for Bundled		
	No. of Operations	Mean Rate (95% CI)	No. of Operations	Mean Rate (95% CI)	Intervention (95% CI)	P Value	
All operations	28 218	36 (25-51)	14 316	21 (13-32)	0.58 (0.37-0.92) ^a	.02	
Urgent/emergent			1189	37 (15-88)	1.03 (0.41-2.57) ^a	.95	
Scheduled			13 127	20 (13-30)	0.55 (0.35-0.86) ^a	.009	
Cardiac operations	7576	46 (26-82)	3257	40 (23-70)	0.86 (0.47-1.57) ^b	.63	
Urgent/emergent			571	67 (32-137)	1.44 (0.53-3.91) ^b	.48	
Scheduled			2686	33 (18-62)	0.72 (0.45-1.15) ^b	.17	
Hip or knee arthroplasties	20 642	32 (21-48)	11 059	15 (10-24)	0.48 (0.29-0.80) ^c	.005	
Urgent/emergent			618	14 (3-75)	0.44 (0.0 ⁻ 2.72) ^c	.38	
Scheduled			10 44 1	16 (10-26)	0.51 (0.30-0.85) ^c	.009	

Schweizer et al. JAMA 2015

Behavioral aspects

- Dedicated hospital hygiene team
- Elaboration of guidelines
- Staff education
- Avoidance of urinary catheter
- Active post-discharge surveillance
- Limitation of traffic flow in the operating theatre

Our Protocole

Prophylaxis before dental interventions

Haematogenous seeding ?

NOT PROVED!!!

Consensus statement maintenance of good oral hygiene

"I'M REAL SORRY, KANDLEWOOD, BUT WE'VE HAD SOME REDUCTIONS IN OUR DENTAL PLAN."

Uçkay et al. Journal of Hospital Infection 2013

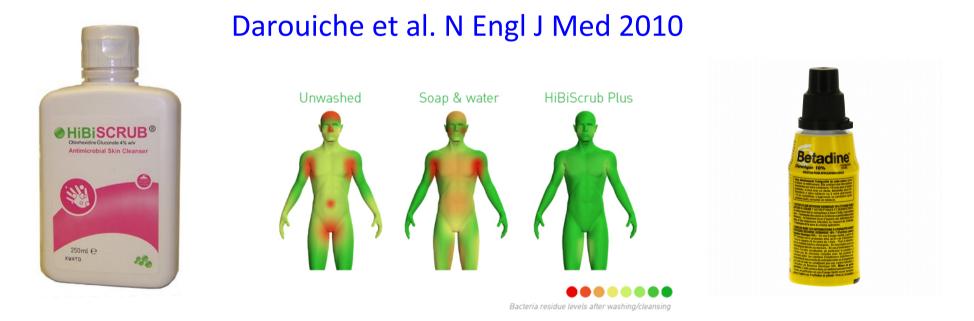
Pre-hospital

20-30% of the population carriers for MSSA

Destinataires : CME – Direction – Président du CLIN – EOH - Laboratoire – Directrice des soins infirmiers - Responsables services d'hospitalisation. Bloc opératoire. Uroence. Pharmaciens. Responsable ELIOR

Bundeled Intervention (JAMA)

Original Investigation


Association of a Bundled Intervention With Surgical Site Infections Among Patients Undergoing Cardiac, Hip, or Knee Surgery

Marin L. Schweizer, PhD; Hsiu-Yin Chiang, MS, PhD; Edward Septimus, MD; Julia Moody, MS; Barbara Braun, PhD; Joanne Hafner, RN, MS; Melissa A. Ward, MS; Jason Hickok, MBA, RN; Eli N. Perencevich, MD, MS; Daniel J. Diekema, MD; Cheryl L. Richards, MJ, LPN, LMT; Joseph E. Cavanaugh, PhD; Jonathan B. Perlin, MD, PhD; Loreen A. Herwaldt, MD

Schweizer et al. JAMA 2015

Skin Preparation

Superiority of Chlorexidine (Vs Povidone)

Chlorhexidine body wash daily after Operation

Patient's Preparation in the room

CLINIQUE DES CEDRES - ECHIROLLES

PROTOCOLE

		ON CUTANEE	RE
Référence	Révision	Date application	Page

Rédaction : C. Dyck		Vérification AQ :	Approbation Clinique G. Richalet	8	
M. Azran					
Destinataires : R	Responsable bloc	opératoire, Pharmacienne.			
n° de révision	Date	Nature des modifications			
12.4	1010010000	0.1.11			

Antibiotics

When Give Antibiotics ?

1h – 30 min before operation

Matar et al. JBJS 2010

For How Long??

• One dose is OK

Uçkay et al. Journal of Hospital Infection 2013

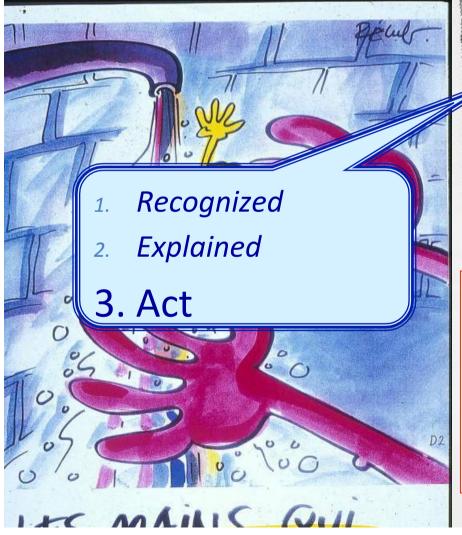
Hair removal

Clippers

NOT razors

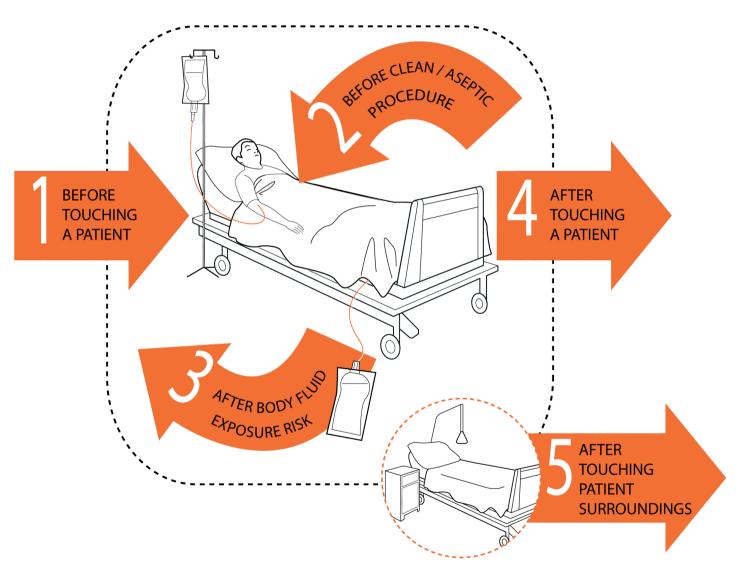
Immediately before surgery

Uçkay et al. Expert Rev Anti Ther 2010


Surgeon's Preparation

In 1825- French pharmacist moistening hands liquid chloride

2-3 min


Handwashing ... an action of the past (except when hands are visibly soiled)

Alcohol-based hand rub is standard of care

"My 5 Moments for Hand Hygiene"

Sax et al. J Hosp Infect 2007

Gloves, gowns, drapes

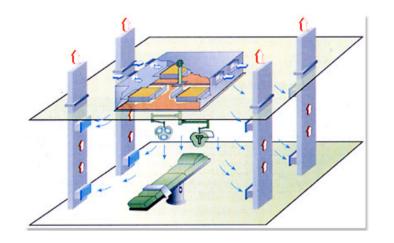
Cohrane review in 26 articles=inconclusive

Routine changing of the outer gloves

ONLY EXPERT OPINION

Personal Protection System

- Its Usage under Controversy
- Positive Pressure


The Gown-glove Interface maybe a Source of Contamination

Fraser et al. CORR 2015

Laminar Air Flow

60-90.000\$ Cost Installation

Retrospective analyses absence of SSI reduction

Brandt et al. Ann Surg 2008.

AVOID


Post-surgical wound care

- Various dressings
- Topical agents
- No superiority protocol
- Avoidance of blistering



Take Home Message

- NO REAL GUIDELINES EXIST
- Make Protocols in the CLINIC
- FOLLOW YOU AND THE REST OF THE TEAM THE SAME PROTOCOL
- ALWAYS A CHECKLIST
 BEFORE CUTTING THE
 PATIENT

"See? The idiots put my danged knee replacement in backward!"

Aknowlgement for my Fellow

Achilleas Boutsiadis, M.D.

STAY TUNNED ALWAYS !

GUEST NATION

Simultaneous translation French/ English

SYMPOSIA

SHOULDER POSTERIOR INSTABILITY A. Godenèche and P. Mansat

ANTERO LATERAL TENODESIS OF THE KNEE P. Imbert and D. Saragaglia

NOVEMBER 30th >DECEMBER 3rd

PARIS PORTE DE VERSAILLES

www.sofarthro.org

CONGRESS PRESIDENTS: Philippe BEAUFILS

REGISTRATION: MCO CONGRÈS mary.abbas@mcocongres.com